Background on Monitored Natural Attenuation

EPA Policy On Use of Monitored Natural Attenuation For Site Remediation

Background on Directive

EPA's Office of Solid Waste and Emergency Response (OSWER) developed **Policy Directive:** Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, Directive 9200.4-17, December 1, 1997.

- Clarifies EPA's position on use of monitored natural attenuation (MNA) for remediating contaminated sites.
- Not intended to be a detailed technical guidance.
- Does not deal with legal or administrative issues (e.g., property transfer, NPL deletion).

How To Obtain Directive

■RCRA, Superfund Hotline: 1-800-424-9346

■OUST Home Page

- ► More Information
- ▶ Policy Directive
- ▶http://www.epa.gov/swerust1/directiv/9200_417.htm

EPA Definition

- Monitored Natural Attenuation (MNA):
- ... the use of **natural attenuation processes** within the context of a carefully controlled and monitored site cleanup approach that will reduce contaminant concentrations to levels that are protective of human health and the environment within a **reasonable time frame**.

MNA Processes

- Physical, chemical, or biological processes that act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants.
- Includes biodegradation, dispersion, dilution, sorption, volatilization, and chemical or biological stabilization or destruction of contaminants.

MNA Processes (cont'd)

- EPA prefers those processes that degrade contaminants and expects that MNA will be most appropriate where plumes are stable.
- Some processes have undesirable results, such as:
 - ▶ Creation of toxic daughter products, or
 - ▶Transfer of contaminants to other media.

Role of MNA in OSWER Remediation Programs

- ■ALL remedies must protect human health and the environment.
- ■NOT a "walk away" or "do nothing" option.
- ■NOT a "default" or presumptive remedy.

Role of MNA in OSWER Remediation Programs (cont'd)

- Site-specific, risk-based decisions are essential. MNA is an active choice although it is a passive remediation technology.
- Proponent must demonstrate that MNA is the appropriate option, not the implementing agency.

Demonstrating the Efficacy of MNA

- Three types of site-specific information may be required:
 - Historical ground water and/or soil chemistry data demonstrates trend of declining contaminant concentration.
 - 2. Hydrogeologic and geochemical data that demonstrate NA processes and rates.
 - 3. Field or microcosm studies.
- Unless #1 is of sufficient quality and duration, #2 is generally required (regulatory decision).

Sites Where MNA May Be Appropriate

- MNA is appropriate as remedial approach only where it:
 - ► Can be demonstrated to achieve remedial objectives within reasonable time frame, and
 - ► Meets the applicable remedy selection criteria for the particular OSWER program.

Sites Where MNA May Be Appropriate (cont'd)

- MNA will typically be used in conjunction with active remediation measures (e.g., source control) or as follow-up to such measures.
- MNA should not be used where such an approach would result in significant contaminant migration or unacceptable impacts to receptors.

Reasonable Time Frame

- Time frame should not be excessive compared to that required for other remedies.
- Reasonable time frame is a site-specific decision.

Reasonable Time Frame (cont'd)

- Some factors that impact "reasonableness" of time frame include:
 - ► Current and potential future uses of affected ground water,
 - ▶ Relative time frame in which aquifer may be needed,
 - ▶ Public acceptance of extended time for remediation,
 - Reliability of monitoring and institutional controls, adequate funding over time required to reach cleanup objectives.
 - ▶ Regional resource issues

Remediation of Sources

- EPA expects that source control measures will be evaluated for all sites and implemented at most sites where practicable.
- Measures include removal, treatment or containment of sources.
- Source control is especially important where MNA is part of the remedy.
- Appropriate source control actions are high priority and should be implemented sooner rather than later in site response.

Performance Monitoring

- Required to gauge effectiveness and protect human health and the environment.
- Of even greater importance for MNA remedies because longer cleanup time frames are generally involved.
- Must demonstrate that NA is occurring as expected, identify transformation products, detect plume migration, and verify no impact to receptors.
- Required for as long as contamination levels remain above cleanup goals.

Contingency Remedies

- A cleanup technology or approach that will function as a "backup" in the event that MNA fails to perform as anticipated.
- Contingency measures are especially important when MNA is selected based primarily on predictive analysis (i.e., uncertainty is greater than when based on historical data).
- "Triggers" should be established which signal unacceptable performance of the MNA remedy.

Summary

- MNA is appropriate at many but **NOT all sites**.
- NOT a "no action," "default" or "presumptive" remedy.
- Should NOT result in significant contaminant migration or unacceptable impacts to receptors.

Summary (cont'd)

- Progress should be carefully monitored.
- Contingency measures should be included when selection of MNA was based mostly on predictive analysis.
- A cleanup is NOT completed until cleanup objectives, set by the implementing Agency, have been met.

Where to Find the OSWER MNA Directive and Technical Updates

- http://www.epa.gov/swerust1/directiv/9200_417.htm
- http://www.epa.gov/ORD/WebPubs/biorem (case sensitive)

Trends in the Use of Monitored Natural Attenuation

Trends in the Use of MNA

Fran Kremer US EPA

Office of Research and Development
National Risk Management Research Lab
Cincinnati, OH

Programs that May Look at Natural Attenuation in Cleanup

- UST
- CERCLA
- RCRA
- State Voluntary Cleanup Programs
- Brownfields Sites

How Has Natural Attenuation Been Used?

- Variety of sites, including MLFs, industrial LFs, refineries, recyclers, etc
- At all but six sites, natural attenuation used in combination with active remedy components
- Often have low exceedences of cleanup levels
- Contingencies for active measures

MNA Groundwater RODs

Contaminants Present at Sites for which Natural Attenuation was Specified

*Some sites have more than one contaminant

Contaminants Present at Sites for which Natural Attenuation was Specified

Seminar Series on Monitored Natural Attenuation for Ground Water

LUST Groundwater Remediation Technologies, FY97

Soil Remediation Technologies at UST Sites, FY97

Occurrence of MTBE by Geographical Area

- Maximum MTBE Concentrations Exceed 1mg/L at:
 - 47% of 251 California sites
 - -63% of 153 Texas sites
 - -81% of 41 Maryland sites

T. Buscheck, et al.

MTBE Occurrence at Northern California Sites

T. Buscheck, et al.

MTBE Occurrence at Southern California Sites

T. Buscheck, et al.

MTBE Occurrence at Texas Sites

T. Buscheck, et al.

MTBE Occurrence at Maryland Operating Sites

Highest MTBE Concentration (ug/L)

T. Buscheck, et al.

MTBE Occurrence at Florida Sites

T. Buscheck, et al.

Framework for Use of Monitored Natural Attenuation

Framework for Use of MNA

Fran Kremer
US EPA
Office of Research and Development
National Risk Management Research Lab
Cincinnati, OH

Potential Advantages of MNA

- Generation of lesser volume of remediation wastes, reduced potential for cross-media transfer of contaminants, & reduced risk of human exposure to contaminated media
- Less intrusion
- Potential for application to all or part of given site

Potential Advantages of MNA

- Use in conjunction with, or as a follow up to, other (active) remedial measures
- Lower overall remediation costs than those associated with active remediation

Potential Disadvantages of MNA

- Longer time frame may be required to achieve remediation objectives
- Site characterization may be more complex and costly
- Toxicity of transformation products may exceed that of the parent compound
- Long term monitoring

Potential Disadvantages of MNA

- Institutional controls may be necessary to ensure long-term productiveness
- Potential for contaminant migration
- Possible renewed mobility of previously stabilized contaminants
- More extensive education and outreach efforts

Two Basic Questions for Bioremediation

- When to start?
- When to stop?

When to Stop Active Remedial Processes

- When active treatment no longer doing any good
- When active treatment is no faster than MNA

When/Where is Equilibrium Reached?

- Site factors- soil type, precipitation influx
- Contaminant factors- solubility, concentration, carrier...

Source Control

 "Source control actions should use treatment to address "principal threat" wastes (or products) wherever practicable, and engineering controls such as containment for waste (or products) that pose a relatively low long-term threat or where treatment is impracticable"

Contaminant Releases

- Migrate from source area
- Area of contamination expands until equilibrium reached
- MNA equals source output

Equilibrium

- Eventually, MNA exceeds rate of source output, and concentration of contaminant(s) stabilizes or decreases
- Importance of source control as the primary remedial alternative

Monitoring Strategies

- Three kinds of monitoring
 - 1. Site characterization to describe disposition of contamination and forecast its future behavior.
 - 2. Validation monitoring to determine whether the predictions of site characterization are accurate.
 - 3. Long-term monitoring to ensure that the behavior of the contaminant plume does not change

Developing Conceptual Model

- Determine nature and 3-D extent of contamination
- Determine site processes mobilizing contaminants
- Determine factors influencing contaminant movement pathways
- Determine changes in contaminant location and concentration with time
- Determine the point(s) of attainment

Determine Nature and 3-D Extent of Contamination

- Contaminants
- Contaminant properties
 - P/C-solubility, volatility, Henry's Law, sorption coefficients, pH
 - Bio-degradation potential, required redox, electron acceptors/donors, byproducts

Determine Nature and 3D...(cont)

- Contaminant location- where are they, how far have they moved, define in 3-D
- Contaminant concentration
- Contaminant form/phase-solid, NAPL, vapor, adsorbed, dissolved

Determine Processes Mobilizing Contaminants

- Volatilization
- Leaching
- Mobile NAPL-gravity, water table fluctuations. GW flow
- Dissolution in GW

Determine Factors Influencing Contaminant Movement Pathways

- Lithology
- Hydrogeology-flow rates, flow paths, gradients

Determine Changes in Contaminant Location and Concentration with Time

- Soil concentrations
- NAPL movement
- Changes in dissolved fraction
- Seasonal fluctuations

Points of Attainment

- Given 3-D extent of contamination, will natural attenuation be protective?
- Develop model

How to Improve Understanding & Implementation of MNA

- Control/treat/remove sources
- Thoroughly monitor plume and downgradient areas
- Include contingencies for other measures if MNA fails to meet desired goals
- Involve regulatory agencies early in process

Natural Attenuation

- Burden of proof is on the proponent, not the regulator
- Not a default technology or presumptive remedy
- Not complete until goals of the regulatory agency have been reached to their satisfaction

Predictive Models

- Use of site specific data to predict the fate and transport of solutes, given the controlling physical, chemical and biological processes
- Results of the modeling only as good as the data input
- Several solute fate and transport models available

How to Improve Understanding & Implementation of MNA

- Communicate that MNA is a responsible, managed remediation approach(not a walk away)
- Present site-specific data and analysis that demonstrate occurrence
- Develop defensible conceptual model supporting MNA
- Build defensible predictive models, where appropriate